Lithium
ABC’s
Richard (Rick) Mills
Ahead of the Herd
As a general rule, the most successful man in life is the
man who has the best information
The Puna plateau sits at an elevation of 4,000m, stretches
for 1800 km along the Central Andes and attains a width of 350–400 km.
The Puna covers a portion of Argentina, Chile and Bolivia and hosts an
estimated 70 - 80% of global lithium brine reserves.
The evaporate mineral deposits on the plateau - which may
contain potash, lithium and boron - are formed by intense evaporation
under hot, dry and windy conditions in an endorheic basin - endorheic
basins are closed drainage basins that retain water and allow no
outflow - precipitation and inflow water from the surrounding mountains
only leaves the system by evaporation and seepage. The surface of such
a basin is typically occupied by a salt lake or salt pan. Most of these
salt lakes - called salars - contain brines which are capable of
providing more than one potentially economic product.
This Puna Plateau area of the Andean mountains - where the
borders of Argentina, Bolivia and Chile meet and bounded by the Salar
de Atacama, the Salar de Uyuni and the Salar de Hombre Muerto - is
often referred to as the Lithium Triangle and the three countries
mentioned are the Lithium ABC’s.
a Brine “Mining” Business Model
The salt rich brines are pumped from beneath the crust
that’s on the salar and fed into a series of large, shallow ponds.
Initial 200 to +1,000 parts per million (ppm) lithium brine solution is
concentrated by solar evaporation and wind up to 6,000 ppm lithium
after 18 - 24 months.
The extraction process is low cost/high margin and battery
grade lithium carbonate can be extracted. The cost-effectiveness of
brine operations forced even large producers in China and Russia to
develop their own brine sources or buy most of their needed raw
materials from brine producers.
The major lithium producers, from brine, are the
"Lithium Three": Sociedad Quimica y Minera (SQM),
Rockwood/Chemetall and FMC.
The Lithium Three are all extracting lithium from Puna
Plateau salar brines. The majority of lithium produced today comes from
brines in Chile, Argentina and Nevada.
These brines are considered primarily potash deposits with
lithium as a by-product.

The above diagram was designed to show that several
commercial products can be recovered from typical brine and that the
recovery takes place in a series of steps over the entire evaporation
process. Note that the final product in each step may require
processing in a specialized plant. Also please note that the actual
sequence of process steps may vary from brine to brine, and as such,
the process steps shown above may not be in the correct order for any
specific brine.
SQM’s Atacama brine deposits have the highest lithium
content on the Puna - yet just 11% of its 2009 revenues were from
lithium - 70% of SQM's revenues are from fertilizers. SQM is the
world's largest producer of lithium and lithium is SQM's highest gross
margin product at +50%.
Potash is Fuel for Food
According to the United States Geological Survey (USGS)
Canada has the world’s largest reserves of potash - roughly 50%. Coming
in second is Russia with just over 25% and trailing a distant third is
Belarus at 9% of world reserves.
In a presentation at the 2010 Prospectors and Developers
Association Conference in Toronto Ontario, Canada, T.D. Newcrest
minerals analyst Paul D'Amico forecast significant growth of offshore
potash demand. D'Amico said the potash supply situation is complicated
by the fact there hasn't been a green field potash development in 30
years. D'Amico also estimated that global annual potash demand growth
will average 3% compounded annually.
Potash is used as a major agricultural component in 150
countries but the largest importers of potash are China, India, the US
and Brazil.
Potassium sulfate is commonly used in fertilizers,
providing both potassium and sulfur. Potash is the common name for
potassium chloride.
Because the financial markets crashed and the economy
contracted in 2008 farmers put off buying potash - potash use fell 20%,
phosphate fertilizer use declined 10% and the price per tonne of potash
dropped by two thirds. This lack of fertilization drastically depleted
the soil nutrient base and global soil nutrient levels need to come
back to the trend line.
“Failure to feed the fields is a trend that can’t last for
long, while the global recession severely impacted fertilizer demand,
the science of food production has not changed. The significant volumes
of potash and phosphate that have been mined for crop production must
be replaced to sustain the productivity of the soil.” Potash Corp.
The basic fundamentals of the global potash market are
hard to ignore:
- An
increasing global population - the world's population is steadily
increasing and is expected to reach +9 billion people by 2050. The
United Nations Food and Agriculture Organization (FAO) reported
they think that the total world demand for agricultural products
will be 60 percent higher in 2030 than it is today.
- Increasing
incomes in developing countries will lead to more people being
able to afford protein rich diets – a western style diet heavy in
meat - which means more grain consumption.
- Decreasing
arable land - arable land is being lost at the rate of about
40,000 square miles per year. Land is being used for production of
bio-fuels, topsoil is eroded away by wind and water and the
agriculture land base is being paved over as we become more and more
urbanized. Farmers need to produce more food on less land. There
is only one way this can be done and that’s with an increase in
the use of fertilizer.
The current potash market is estimated at 50 million
tonnes annually and is projected to grow at a compounded annual rate of
3-4%. Potash is a crucial element in fertilizer and has no commercial
substitute. Quite simply, we have to grow more food on less land.
There are several ways farmers can get increased yields,
Genetically Modified Organism (GMO) seed, pesticides, fertilizers, and
satellite (GPS) farming.
Improved seeds, pesticides and new farming techniques are
all going to be needed, improved and used. But the nutrients in soil
are soon used up by ever more intensive farming - and Mother Nature
can’t replace them fast enough. These nutrients need to be replaced or
you have land where crops cannot grow.
Lithium
The world’s future energy course is being charted today
because of the ramifications of peak oil and a need to reduce our
carbon footprints.
A whole new industry - a global wide automotive and
industrial lithium-ion battery industry - is going to be built. As a
result of lithium-ion battery demand for hybrid-electric and electric
cars the increase in demand for lithium carbonate is expected to increase
four-fold by 2017.
Lithium-ion batteries have become the rechargeable battery
of choice in cell phones, computers, hybrid-electric cars and electric
cars. Chrysler, Dodge, Ford, GM, Mercedes-Benz, Mitsubishi, Nissan,
Saturn, Tesla and Toyota have all announced plans to build lithium-ion
battery powered cars.
Demand for lithium powered vehicles is expected to
increase fivefold by 2012. The worldwide market for lithium batteries
is estimated at over $4 billion per year.
Lithium carbonate is also an important industrial
chemical:
- It
forms low-melting fluxes with silica and other materials
- Glasses
derived from lithium carbonate are useful in ovenware
- Cement
sets more rapidly when prepared with lithium carbonate, and is
useful for tile adhesives
- When
added to aluminum trifluoride, it forms LiF which gives a superior
electrolyte for the processing of aluminum
- Lithium
carbonate can be used in a type of carbon dioxide sensor.
Demand today is in the range of 120,000 tonnes of lithium
carbonate equivalent (LCE) annually. Lithium is not traded publicly -
and is usually distributed in a chemical form such as lithium carbonate
(Li2CO3) - instead it’s sold directly to end users for a negotiated
price per tonne of Lithium carbonate (Li2CO3).
Production figures are often quoted in lithium carbonate
equivalent quantities. By weight approximately 18.8% of lithium
carbonate is lithium. Therefore 1kg of lithium is the equivalent of 5.3
kg of lithium carbonate.
“We are projecting 40% Li demand increase by 2014, with
batteries accounting for 34% of use, the largest single end-use
segment.” Jon
Hykawy, analyst Byron Capital Markets
Lithium-ion batteries are quickly becoming the most
prevalent type of battery used in everything from laptops to cell
phones to hybrid and fully electric cars to short term power storage
devices for wind and solar generated power. At present, 39 per
cent of lithium-ion batteries are produced in Japan, 39 per cent in
China and 20 per cent in South Korea.
“With forecast 10% to 20% penetration rates by 2020 for
pure and hybrid electric vehicles, we expect an incremental increase in
demand of 286,000 tonnes of lithium carbonate equivalent, significantly
outstripping current supply.” Canaccord Adams
analyst, Eric Zaunscherb
“Our electric vehicle investment is not one-car
innovation, it is a new way of looking at our industry. This is the
beginning of the story.” Carlos Ghosn, Nissan chief executive officer
Sodium Chloride (rock salt or halite)
The principal use for salt is in the chemical manufacturing
business - chloralkali and synthetic soda ash producers use salt as
their primary raw material.
Salt is used in many applications and almost every
industry:
- Cooking
- Manufacturing
pulp and paper
- Setting
dyes in textiles and fabric
- Producing
soaps, detergents, and other bath products
- Major
source of industrial chlorine and sodium hydroxide
Global demand for salt is forecast to grow 2.5 percent per
year to 305 million metric tons in 2013.
Solar evaporation is the most popular and most economical
method of producing salt. China is the world’s largest consumer of salt
– other than the dietary needs of 1.3 billion people - there’s an
enormous chemical manufacturing industry being built in China.
Boron
Boron combines with oxygen and other elements to form
boric acid, or inorganic salts called borates.
Borates are used for:
- Insulation
fiberglass
- Textile
fiberglass
- Heat-resistant
glass
- Detergents,
soaps and personal care products
- Ceramic
and enamel frits and glazes
- Ceramic
tile bodies
- Agricultural
micronutrients
- Wood
treatments
- Polymer
additives
- Pest
control products
- Boron
is an essential component in the manufacture of borosilicate glass
used in LCD screens
Boric Acid uses:
- As
an antiseptic/anti-bacterial compound
- Insecticide
- Flame
retardant
- In
nuclear power plants to control the fission rate of uranium*
- As
a precursor of other chemical compounds
*Boric acid is used in nuclear power plants to slow down
the rate at which fission occurs. Boron is also dissolved into the
spent fuel cooling pools containing used fuel rods. Natural boron is
20% boron-10 which can absorb a lot of neutrons. When you add boric
acid to the reactor coolant – or to the spent fuel rod cooling pools -
the probability of fission is reduced.
The first half of 2009 saw a sharp drop in demand for
borates, but in the second half of the year markets for both
textile-grade fibreglass and borosilicate glass recovered.
World production of borates remains mostly concentrated in
the US and Turkey – these two countries account for 75% of supply.
Chinese boron - both in terms of quantity and grade - is
inadequate to meet domestic demand so the country is now the largest
importer of both natural borates and boric acid.
Silly Putty was originally made by adding boric acid to
silicone oil.
Considerations – may I see junior’s grades?
The key factors that determine the quality, economics and
attractiveness of brines are:
- Potassium
content
- Lithium
content
- Presence
of contaminants ie magnesium (Mg)
- Porosity
- Net
evaporation rate
- Recoverable
by-products
- Infrastructure
– or lack thereof
- Country
risk
- 100%
control over production
- Low
capex, low production costs, high margin products
A common industry axiom says that the ratio of Mg to Li in
brines must be below the range of 9:1 or 10:1 to be economical. This is
because the Mg has to be removed by adding slaked lime to the brine -
the slaked lime reacts with the magnesium salts and removes them from
the water. If the ratio is 1:1 in the original brine, then the added
cost (due to today’s present cost per tonne of slaked lime) is
$180/tonne of lithium carbonate produced. If the Mg to Li is 4:1 than
the cost of removing magnesium is $720.00 per tonne of lithium
carbonate.
The porosity of a rock is expressed as a percentage and
refers to that portion of the rock that is void space - rock that is
composed of perfectly round and equal sized grains will have a porosity
of 45%. Fluids and gases will be found in the void spaces within the
rock.
Ten million cubic metres of brine bearing rock with a
porosity of 10% will contain one million cubic metres of brine fluid. A
cubic metre is equivalent to a kilolitre.
Salar de Atacama apparently has a porosity of about 8%. By
oil and gas standards 8% is quite low, but brines are less viscous than
hydrocarbon fluids and will flow more easily through rocks with lower
porosity and permeability characteristics.
A major factor affecting capital costs is the net
evaporation rate – this determines the area of the evaporation ponds
necessary to increase the grade of the plant feed. These evaporation
ponds can be a major capital cost. The Salar de Atacama has higher
evaporation rates (3200 mm pan evaporation rate per year (py) and
<15 mm py of precipitation) than other salt plains in the world and
evaporation takes place all year long.
Contributing to efficient solar evaporation and
concentration of the Puna Plateau brines are:
- Low
rainfall
- Low
humidity
- High
winds
- High
elevations
- Warm
days
Though its evaporation rate is only about 72 percent of
Atacama’s, Salar de Hombre Muerto is still commercially successful
because costs are low and are further offset by the sale of recoverable
byproducts like boric acid.
Rockwood Holdings recover moderate tonnages of potassium
chloride as a co-product at their Chile operation. SQM recovers
potassium chloride, potassium sulphate and boric acid.
According to FMC’s website they have:
- High
concentrations of lithium - reportedly between 680 and 1210 ppm Li
- High
in potassium - concentrations from 0.24 to 0.97 wt% K
Chile and Argentina supply 78% of global lithium carbonate
and hold more than 90% of the proven lithium carbonate reserves.
The Salar de Uyuni (Bolivia) has the lowest average grade of
Li at .028 and has an extremely high ratio of Mg/Li at 19.9
Uyuni’s higher rainfall and cooler climate means that its
evaporation rate is not even half that of Atacama’s. The lithium in the
Uyuni brine is not very concentrated and the deposits are spread across
a vast area. Bolivia also has limited infrastructure - compared to that
of Chile, Argentina or the US – and they lack free access to the sea.
Consider also the high “country risk” factor companies
face doing business in Bolivia. Evo Morales, Bolivia’s President, has
already nationalized the oil and gas industry - who’s next?
“The state doesn't see ever losing sovereignty over the
lithium. Whoever wants to invest in it should be assured that the state
must have control of 60% of the earnings.”
Morales at a March 2009 press conference
“The previous imperialist model of exploitation of our
natural resources will never be repeated in Bolivia. Maybe there could
be the possibility of foreigners accepted as minority partners, or
better yet, as our clients.” head of lithium extraction Saul Villegas
In 1990 hunger strikes and massive protests forced US
based Lithco out of a $46 million investment into Bolivia’s Salar de
Uyuni. The company set up operations at Argentina's Salar de Hombre
Muerto, and eventually became part of FMC.
It’s not surprising to this author that while Chile and
Argentina have thriving lithium and potash production, Bolivia
lags far behind.
A company should have 100% control over the production
rate from their salar. It’s possible an aquifer can become diluted -
over producing can impact the brine’s salt concentrations and chemical
compositions - or depleted by too many wells sucking up more brine than
should be produced.
If two or more companies have straws (wells) into the same
salar legal battles might result over the sharing of the resources.
“Lithium production via the brine method is much less
expensive than mining. Lithium from minerals or ores costs about
$4,200-4,500/tonne (€2,800-3,000/tonne) to produce, while brine-based
lithium costs around $1,500-2,300/tonne to produce.” John McNulty,
analyst Credit Suisse.
Global lithium production was dominated by the US - until
the 1980s - with hard rock mining from spodumene. The better economics
of the Chilean/Argentine salars priced hard rock lithium mining out of
the markets.
There are exceptions - Talison Minerals has its
Greenbushes operation (a combined tantalum and lithium mine) in
Australia. This is the largest, highest grade lithium (spodumene)
pegmatite deposit in the world and recent price increases have enabled
them to sell their production to China for transformation into lithium
carbonate. Two other producers of lithium ore concentrates are mostly
concerned with the glass industry.
Hard rock lithium miners have two large problems facing
them when competing with brine economics – firstly most have large
capital (capex) costs for start up and secondly their production cost
is roughly twice what it is for the brine exploitation process. These
higher production costs are because of the different extraction
processes used.
When lithium chloride reaches optimum concentration -
using nothing more than sun and wind - the liquid is pumped to a
recovery plant and treated with soda ash, precipitating lithium
carbonate. The carbonate is then removed through filtration, dried and
shipped.
In the case of production from pegmatites the process
is:
- Mining
- Concentration
to a higher grade
- Calcination
at 1100 degrees Celsius to produce acid-leachable beta spodumene
- Treated
with sulphuric acid at 250 degrees Celsius
- conversion
of the lithium sulphate solution with sodium carbonate
This author believes investors will see development
financings and start-up capital flow towards advancing the easier,
quicker to production and cheaper to produce brine deposits rather than
the higher start up cost and more expensive to produce hard rock mining
situations.
There is room in the market for first mover juniors now
positioned with quality salar packages in Argentina and Chile.
Competition in these markets will not hurt margins for any company, old
or new, due to the potential for exponential demand growth of potash
and lithium.
But
The prime candidates have to be the lowest cost producers
from both a capital (land package costs and capex) and variable (ie
removal of contaminents) cost point-of-view.
Dajin DJI – TSX.v
Cash: $350,000
Debt: $0
Shares Outstanding: 47,320,554
Fully Diluted: 55,155,554
Insiders own: 25%
Institutional ownership = 5%
Retail ownership = 70%
Dajin controls a 100% interest in mineral concessions in
Salta and Jujuy provinces of Argentina that cover regions known to
contain brines rich in lithium, potassium and boron.
These concessions total approximately 101,000 hectares in
various drainage basins including 81,000 hectares of salar and Tertiary
paleo-salar in the Salinas Grandes/ Guayatayoc salt lake basins.
Dajin’s principal focus for lithium exploration will be
the Salinas Grandes/ Guayatayoc salt lake basins. DJI’s project data
indicates both permissive brine chemistries and lithium concentrations
that are similar to those being produced from elsewhere in the Lithium
Triangle.
Dajin has recently received, from Safari Energy Inc., a
Calgary based geophysical consultant, the interpretation of 417.6 line
kilometres of 2D seismic lines shot on and around Dajin’s Salinas
Grandes/Guayatayoc project. The data indicate stacked salt deposits
deposited in sedimentary/structural basins which have potential to be
collection zones for denser, higher grade brines.
Based on geophysical factors eleven drill sites were
selected for initial delineation and evaluation of possible reservoir
quality lithologies.
“The receipt of this report identifying a series of
horizons that are very prospective for brines rich in boron, lithium
and potash below our mineral tenures is just one more indication of
Dajin’s exploration momentum since it follows closely on receipt of
Jujuy provincial government certification of Dajin’s 83,248 hectares of
mineral tenures at the Salinas Grandes/Guayatayoc project and
registration of an Argentine subsidiary to house said project.” Mr. Brian
Findlay, President of Dajin
Mr. Findley went on to point out that as a
consequence of Dajin’s 100% ownership in the concessions the company
will have no payments or work commitments to previous owners and no
royalties to pay to third parties.
Orocobre (ASX: ORE)
A deal between Australian explorer Orocobre and a
subsidiary of the world's largest automaker Toyota for Orocobre’s Salar
de Olaroz Lithium-Potash Project in Argentina is considered an
important step in the future use of lithium-ion batteries in electric
cars.
Toyota Tsusho emerged the winner in an army of suitors
representing auto makers, battery manufacturers and chemical groups all
anxious to secure a dependable supply of lithium. Toyota Motors owns
22% of Toyota Tsusho - the procurement company for Toyota Motors.
Toyota Tsusho will provide US$4.5 million to fund the
completion of a feasibility study and other associated pre-development
activities which are expected to be completed in the third quarter of
2010.
The Japanese company will also be responsible for securing
a Japanese government guaranteed low-cost debt facility for at least
60% of the project's development cost. This facility is expected to be
secured through Japan Oils, Gas and Metals National Corporation - a
government entity that provides assistance to Japanese companies in
obtaining mineral resources.
The Salar de Olaroz Lithium-Potash Project is believed to
have 1.5 million tonnes of lithium carbonate and 4.4 million tonnes of
potash. Orocobre hopes to develop a 15kt lithium carbonate and 36kt
potash annual production capacity beginning in 2012.
Project capex is estimated at $80 million to $100 million.
Orocobre recently announced, on March 8th 2010, two
significant discoveries.
Extensive pit sampling at their Salinas Grandes Project
has shown the highest average lithium and potassium grades in
Argentina. Grades average 1,409 mg/l lithium and 16,394 mg/l potassium
with a very low average magnesium to lithium ratio of 2.6.
The values from Salinas Grandes are significantly higher
than reported data from other salars in Argentina, and are comparable
to the reported brine grades from Salar de Atacama.
“The world view until this announcement was that there
is Atacama, and then there is everybody else. Now, for the first time
as far as any of us know, there has been discovered in Argentina by
Orocobre brines that are essentially economically equivalent in their
quality to the best, lowest-cost production in the world.” Orocobre
chairperson James Calaway
The second discovery is a high quality potassium target at
the Company's Laguna de Guayatoyoc property. Pit sampling on the Guayatoyoc
properties show potassium grades averaging 4,635 mg/l potassium (K)
(ranging from 39 mg/l to 7,464mg/l K).
Salares Lithium LIT – TSX.v
Cash: $1.6 mm (January 31, 2010)
Debt: NIL
Shares Outstanding: 35.5 mm
Fully Diluted: 47.0 mm
Insiders own: 2%
Institutional ownership = 0%
Retail ownership = 98%
Salares Lithium’s 'Salares 7' Project consists of
96,604 hectares (966 sq km) with 39,404 hectares (394 sq km) of
exploration potential solely within actual salares/brine lakes. Salares
Lithium believes this is one of the largest land and pure salar
concession packages in the lithium exploration sector (LIT controls
100% of five salars clustered within 155 km's of each other - no
severed ownership means the only potential straws into these salars
will be Salares Lithium’s).
Historic sampling (non NI43-101 compliant) has returned
lithium and potassium in all seven salars with grades up to 1,080 ppm
lithium and 10,800 ppm potassium.
Surveys have presently been conducted on two salars:
Salar de la Isla - Encompasses a total of 16,500 hectares
and is approximately 22 kilometres long and 6 km wide on average. The
northern area surveyed and studied comprises approximately 65% (10,750
hectares) of the areal extent of the salar.
Using the results obtained from the 38.5 line km survey,
Geodatos SAIC ("Geodatos") of Santiago, Chile constructed a
three dimensional model of the distribution of the interpreted brine
bearing horizon.
Using a resistivity cut-off of 1 ohm/metre (interpreted by
Geodatos as definite brine), Geodatos than calculated the brine bearing
horizon within the northern portion of the salar to have a volume of
2.459 billion kilolitres (a kilolitre is equal to a cubic metre). Using
a resistivity cut-off of 2 ohm/metres (interpreted by Geodatos as
possible brines) the calculated volume of this horizon increases to
5.393 billion kilolitres.
Salar de las Parinas – This salar is situated
approximately 6.5 kilometres southeast of the Company's Salar de la
Isla and encompasses a total areal extent of 5,400 hectares. The TEM
survey lines for Las Parinas were extended beyond the boundaries of the
salar onto areas covered by alluvial and/or volcanic material. The
survey identified a continuous brine bearing horizon that extends up to
2.5 km from the salar’s edge and underneath the adjacent rocks.
Using the results obtained from the 26.5 line km survey
Geodatos constructed a three dimensional model of the distribution of
the interpreted brine bearing horizon. This horizon extends from surface
to a depth of 170 metres.
Using a resistivity cut-off of 1 ohm/metre (probable
brine) Geodatos has calculated the brine bearing horizon within the
surveyed portion of the las Parinas salar to have a volume of 1.177
billion cubic metres. Using a resistivity cut-off of 2 ohm/metres
(possible brines) the calculated volume of this horizon increases to
4.009 billion cubic metres.
“We are excited about the volume calculation identified
by Geodatos… The Company will now be required to drill/sample the extensive
interpreted brine horizons before a porosity value and a resource
calculation can be established.” Todd Hilditch, CEO
Salares Lithium.
Conclusion
“We think lithium-ion batteries for electric vehicles are
the best technology.” Don Walker, CEO Magna International Inc.
“Magna wants to be on the leading edge of any new
technology, and so we jumped on this technology a few years ago. The
high-cost is the battery. So, working on the supply chain, getting the
price down, and working on new composites for the battery are all
things we are working on.” Ted Robertson, Magna's chief technical
officer
We seem to be going through an Eco-Energy Revolution -
consider the ongoing nuclear renaissance, the surge towards energy
retrofitting, cleaning up the environment and billions of dollars being
given out to develop the technology behind the lithium-ion battery for
the electrification of our transportation system.
This energy revolution is a serious investable long-term
trend and we, as investors, have to take advantage of the opportunities
being presented. We’d be smart to get in early, ahead of the herd, to
take advantage of the coming global rush to electricity – generated by
nuclear power and stored in lithium-ion batteries.
“The power of population is indefinitely greater than the
power in the earth to produce subsistence for man.” Thomas Robert Malthus
The U.N. calls the global food crisis a "silent
tsunami" and faith in the ability of local and global commodity
markets to fill 6.6 billion bellies, never mind the projected 2.7
billion more by 2050 (U.N. projections say the world's population will
peak at 9.3 billion in 2050) has been shaken.
Are the words of Thomas Malthus coming back to haunt us?
In order for a plant to grow and thrive, it needs a
number of different chemical elements. Three of these are the
macronutrients nitrogen, phosphorus and potassium (a.k.a. potash, the
scarcest of the three). Potassium makes up 1 percent to 2 percent of
any plant by weight and is essential to metabolism. The availability of
nitrogen, phosphorus and potassium in the soil, in a readily available
form, is the biggest limiter to plant growth.
“Strong farmer returns, a depleted distributor pipeline
and the agronomic need to replace soil nutrients have kick-started a
potash rebound from 2009 lows.” Potash Corp. CEO Bill Doyle
Potash Corp – the world's largest fertilizer maker -
issued cautious guidance in January saying it expects first-quarter
earnings to be between $1.30 and $1.50 per share which is well above its
previous forecast of .70 - $1.00 per share.
“The upward revision reflects a sharp rebound in potash
demand that is expected to drive a record quarter for North American
sales volumes and strong offshore shipments” the
company said in explaining the revision.
This Brine “Mining” Business Model should be on every
investors radar screen.
Is it on yours?
Richard (Rick) Mills
rick@aheadoftheherd.com
www.aheadoftheherd.com
If you're interested in the junior resource market and
would like to learn more please come and visit us at aheadoftheherd.com
***
Richard is host of aheadoftheherd.com and invests in the
junior resource sector. His articles have been published on over 200
websites, including: Wall Street Journal, SafeHaven, Market Oracle,
USAToday, National Post, Stockhouse, Casey Research, 24hgold, Vancouver
Sun, SilverBearCafe, 321Gold, Kitco, Gold-Eagle, The Gold/Energy
Reports, Calgary Herald and Financial Sense.
Legal Notice / Disclaimer
This document is not and should not be construed as an offer to sell or
the solicitation of an offer to purchase or subscribe for any
investment. Richard Mills has based this document on information
obtained from sources he believes to be reliable but which has not been
independently verified; Richard Mills makes no guarantee,
representation or warranty and accepts no responsibility or liability
as to its accuracy or completeness. Expressions of opinion are those of
Richard Mills only and are subject to change without notice. Richard
Mills assumes no warranty, liability or guarantee for the current
relevance, correctness or completeness of any information provided
within this Report and will not be held liable for the consequence of
reliance upon any opinion or statement contained herein or any
omission. Furthermore, I, Richard Mills, assume no liability for any
direct or indirect loss or damage or, in particular, for lost profit,
which you may incur as a result of the use and existence of the
information provided within this Report.
Richard Mills owns shares of Dajin Resources. Dajin
Resources and Salares Lithium are advertisers on aheadoftheherd.com
Ahead of the
Herd.com Media Group Inc.a division of Ahead of the Herd Holdings Inc.
All rights reserved. No statement or expression of opinion, or any
other matter herein, directly or indirectly, is an offer or the
solicitation of an offer to buy or sell the securities or financial
instruments mentioned. While we believe the sources of information to
be reliable, we in no way represent or guarantee the accuracy of the
statements made herein. Ahead of the Herd.com does not provide
individual investment counseling, act as an investment advisor, or
individually advocate the purchase or sale of any security or
investment. The publisher, editors and consultants of Ahead of the
Herd.com may actively trade in the investments discussed in this
website and newsletter. They may have substantial positions in the
securities recommended and may increase or decrease such positions
without notice. Neither the publisher nor the editors are registered
investment advisors. Subscribers should not view this publication as
offering personalized legal or investment counseling. Investments
recommended in this website and publication should be made only after
consulting with your investment advisor and only after reviewing the
prospectus or financial statements of the company in question.
Unauthorized reproduction of this newsletter or its contents by
Xerography, facsimile, or any other means is illegal and punishable by
law.
|